A posteriori error estimation and adaptivity for degenerate parabolic problems

نویسندگان

  • Ricardo H. Nochetto
  • Alfred Schmidt
  • Claudio Verdi
چکیده

Two explicit error representation formulas are derived for degenerate parabolic PDEs, which are based on evaluating a parabolic residual in negative norms. The resulting upper bounds are valid for any numerical method, and rely on regularity properties of solutions of a dual parabolic problem in nondivergence form with vanishing diffusion coefficient. They are applied to a practical space-time discretization consisting of C0 piecewise linear finite elements over highly graded unstructured meshes, and backward finite differences with varying time-steps. Two rigorous a posteriori error estimates are derived for this scheme, and used in designing an efficient adaptive algorithm, which equidistributes space and time discretization errors via refinement/coarsening. A simulation finally compares the behavior of the rigorous a posteriori error estimators with a heuristic approach, and hints at the potentials and reliability of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems

In this paper we summerize recent results on a posteriori error estimation and adaptivity for space-time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This al...

متن کامل

On a method for a-posteriori error estimation of approximate solutions to parabolic problems

The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error esti...

متن کامل

A Posteriori Error Analysis And Adaptivity For Finite Element Approximations Of Hyperbolic Problems

A posteriori error analysis and adaptivity for nite element approximations of hyperbolic problems a Endre S uli The aim of this article is to present an overview of recent developments in the area of a posteriori error estimation for nite element approximations of hyperbolic problems. The approach pursued here rests on the systematic use of hyperbolic duality arguments. We also discuss the ques...

متن کامل

Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems

The paper is concerned with parabolic time-periodic boundary value problems which are of theoretical interest and arise in different practical applications. The multiharmonic finite element method is well adapted to this class of parabolic problems. We study properties of multiharmonic approximations and derive guaranteed and fully computable bounds of approximation errors. For this purpose, we...

متن کامل

A Posteriori Error Estimates for Parabolic Problems via Elliptic Reconstruction and Duality

We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error estimators and thus a fully practical version of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2000